Logarithmic bred vectors in spatiotemporal chaos: structure and growth.

نویسندگان

  • Sarah Hallerberg
  • Diego Pazó
  • Juan M López
  • Miguel A Rodríguez
چکیده

Bred vectors are a type of finite perturbation used in prediction studies of atmospheric models that exhibit spatially extended chaos. We study the structure, spatial correlations, and the growth rates of logarithmic bred vectors (which are constructed by using a given norm). We find that, after a suitable transformation, logarithmic bred vectors are roughly piecewise copies of the leading Lyapunov vector. This fact allows us to deduce a scaling law for the bred vector growth rate as a function of its amplitude. In addition, we relate growth rates with the spectrum of Lyapunov exponents corresponding to the most expanding directions. We illustrate our results with simulations of the Lorenz 1996 model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of characteristic Lyapunov vectors in spatiotemporal chaos.

We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. Systems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz '96 model exhibit the same features in quantitative...

متن کامل

Exponential localization of singular vectors in spatiotemporal chaos.

In a dynamical system the singular vector (SV) indicates which perturbation will exhibit maximal growth after a time interval tau . We show that in systems with spatiotemporal chaos the SV exponentially localizes in space. Under a suitable transformation, the SV can be described in terms of the Kardar-Parisi-Zhang equation with periodic noise. A scaling argument allows us to deduce a universal ...

متن کامل

Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses

We prove logarithmic Sobolev inequalities and concentration results for convex functions and a class of product random vectors. The results are used to derive tail and moment inequalities for chaos variables (in spirit of Talagrand and Arcones, Giné). We also show that the same proof may be used for chaoses generated by log-concave random variables, recovering results by Lochowski and present a...

متن کامل

Use of the breeding technique to estimate the structure of the analysis “errors of the day”

A 3D-variational data assimilation scheme for a quasi-geostrophic channel model (Morss, 1998) is used to study the structure of the background error and its relationship to the corresponding bred vectors. The “true” evolution of the model atmosphere is defined by an integration of the model and “rawinsonde observations” are simulated by randomly perturbing the true state at fixed locations. Cas...

متن کامل

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010